Specification of Thermoelectric Module

TEC1-21908

Description

The 219 couples, 55 mm × 50 mm size module which is made of selected high performance ingot to achieve superior cooling performance and greater delta T up to 70 °C, designed for superior cooling and heating up to 100 °C applications. If higher operation or processing temperature is required, please specify, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

_				
Th(°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	27.5	29.7	Voltage applied to the module at DT _{max}	
I _{max(} amps)	8.2	8.2	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	141.6	154.7	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance(ohms)	2.60	2.87	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Positive lead wire (Red) 18AWG leads, PVC insulated Negative lead wire (Black) Cold side:Tc See ordering option Hot side:Th See ordering option See ordering option

Ordering Option

Suffix	Thickness	Flatness/	Lead wire length(mm)
	(mm)	Parallelism (mm)	Standard/Optional length
TF	0:3.4±0.1	0:0.1/0.1	125±1/Specify
TF	1:3.4±0.05	1:0.05/0.05	125±1/Specify

Eg. TF00: Thickness 3.4 ± 0.1 (mm) and Flatness 0.1 / 0.1 (mm)

Manufacturing Options

A. Solder:

B. Sealant:

1. T100: BiSn (Tmelt=138°C)

1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217° C)

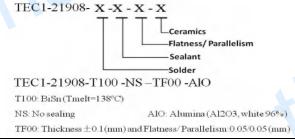
2. SS: Silicone sealant

3. T240: SbSn (Tmelt = 240° C)

3. EPS: Epoxy sealant

C. Ceramics:

D. Ceramics Surface Options:


1. Alumina (Al₂O₃, white 96%)

1. Blank ceramics (not metalized)

2. Aluminum Nitride (AlN)

2. Metalized

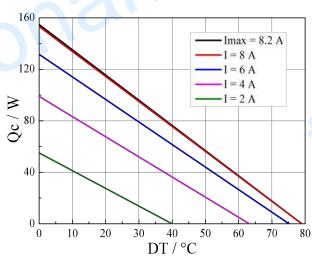
Naming for the Module

10

0

20

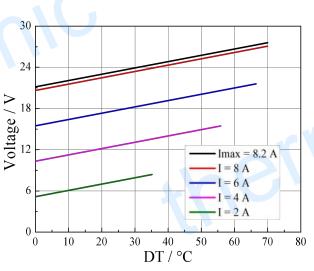
Specification of Thermoelectric Module

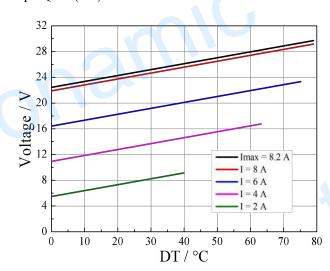

TEC1-21908

150 120 Imax = 8.2 A I = 8 A I = 6 A I = 4 A I = 2 A

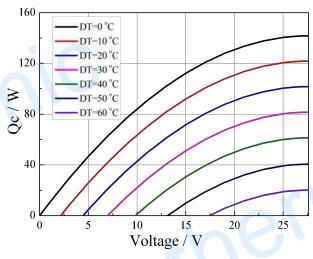
DT / °C

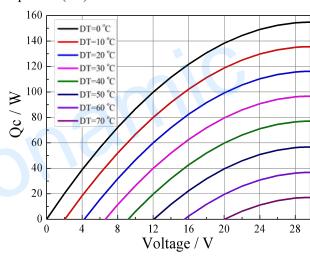
Performance Curves at Th=50 °C




Standard Performance Graph Qc= f(DT)

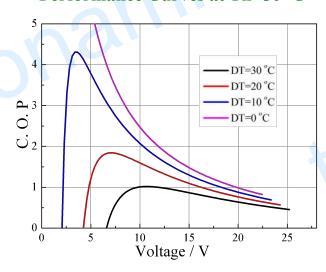
70


60

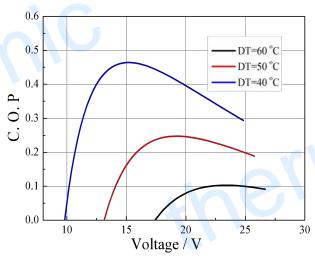

80

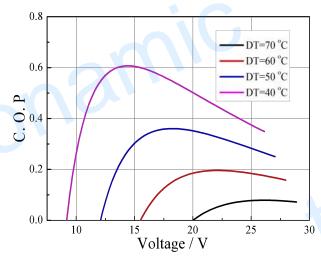
Standard Performance Graph $V = f(\Delta T)$

Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TEC1-21908


Performance Curves at Th=27 °C


DT=30 °C DT=20 °C DT=10 °C DT=0 °C DT=0 °C DT=0 °C

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating.
- Storage module below 100 °C
- Operation below I_{max} or V_{max}
- Work under DC